Search results for "Hard-clad silica optical fiber"

showing 10 items of 12 documents

<title>Fibers supporting super-Gaussian beams: cladding effects</title>

1996

We define a matching function that describes the amplitude variations produced over supergaussian beams, by cladding optical fibers that, if uncladded, can sustain this type of beams as Eigenmodes.

All-silica fiberMaterials scienceOptical fiberbusiness.industryGaussianPhysics::OpticsCladding (fiber optics)law.inventionsymbols.namesakeAmplitudeOpticslawsymbolsReference surfacePhysics::Accelerator PhysicsbusinessHard-clad silica optical fiberComputer Science::DatabasesSPIE Proceedings
researchProduct

2017

Tailored tellurite-glasses possess excellent thermo-viscous ability and linear/nonlinear optical properties. Here, bringing together the merits of these materials with fiber optic technology, we report on the first tellurite-based core-clad dual-electrode composite fiber made by direct, homothetic preform-to-fiber thermal co-drawing. The rheological and optical properties of the selected glasses allow both to regulate the metallic melting flow and to manage the refractive index core/clad waveguide profile. We demonstrate the electrical continuity of the electrodes over meters of fiber. We believe the drawing of architectures merging electrical and optical features in a unique elongated wave…

All-silica fiberMaterials scienceOptical fiberbusiness.industryPlastic-clad silica fiberPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesWaveguide (optics)Electronic Optical and Magnetic Materialslaw.invention010309 opticslaw0103 physical sciencesOptoelectronicsFiber0210 nano-technologybusinessPlastic optical fiberHard-clad silica optical fiberPhotonic-crystal fiberOptical Materials Express
researchProduct

Application prospects of silica core side-glowing optical fibers

2005

The side-emitting optical fibers are specially designed to stimulate leakage of the core-transmitted radiation via their side surfaces, so creating the effect of glowing tiny wires. The basic design concepts for this kind of optical fibers are discussed, as well as some of the present and potential future applications.

All-silica fiberMaterials scienceOptical fiberlawComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONNanotechnologyHardware_PERFORMANCEANDRELIABILITYHard-clad silica optical fiberGeneralLiterature_MISCELLANEOUSLeakage (electronics)law.inventionPhotonic-crystal fiberSPIE Proceedings
researchProduct

Management of OH absorption in tellurite optical fibers and related supercontinuum generation

2013

Abstract We report the fabrication and the characterization of low OH content and low loss tellurite optical fibers. The influence of different methods of glass fabrication on fiber losses has been investigated. The use of the purest commercial raw materials can reduce the losses below 0.1 dB/m at 1.55 μm. Incorporation of fluoride ions into the tellurite glass matrix makes the optical fibers transparent up to 4 μm. A suspended core microstructured fiber has been fabricated and pumped by nanojoule-level femtosecond pulses, thus resulting in more than 2000-nm bandwidth supercontinuum after a few centimeters of propagation.

All-silica fiberOptical fiberMaterials scienceFabricationbusiness.industryOrganic ChemistryMicrostructured optical fiberAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionSupercontinuumInorganic ChemistryOpticslawFemtosecondOptoelectronicsElectrical and Electronic EngineeringPhysical and Theoretical ChemistrybusinessHard-clad silica optical fiberSpectroscopyPhotonic-crystal fiberOptical Materials
researchProduct

Resonant and thermal changes of refractive index in a heavily doped erbium fiber pumped at wavelength 980 nm

2004

We report a theoretical and experimental study of the refractive index variation in a heavily doped erbium silica fiber within the spectral range 1500-1580 nm under the pumping at the wavelength 980 nm. The two main contributions in the refractive index change are addressed the resonant part determined by the saturation effect in the fiber and the thermal part stemming from the fiber heating due to the excited-state absorption and Stokes losses. We demonstrate that the thermal contribution in the resultant refractive index change is a notable value, which is the feature of erbium fibers with a high concentration of erbium ions.

All-silica fiberOptical fiberMaterials sciencePhysics and Astronomy (miscellaneous)Silica fiberbusiness.industryPhysics::Opticschemistry.chemical_elementFísicaÒpticaGraded-index fiberlaw.inventionErbiumZero-dispersion wavelengthOpticschemistrylawOptoelectronicssense organsbusinessHard-clad silica optical fiberPhotonic-crystal fiber
researchProduct

Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources

2010

Made available in DSpace on 2013-08-28T14:12:29Z (GMT). No. of bitstreams: 1 WOS000285749500124.pdf: 1017839 bytes, checksum: f517fd8ef33fd56d66b9ccda9dc4d0f3 (MD5) Made available in DSpace on 2013-09-30T19:22:53Z (GMT). No. of bitstreams: 2 WOS000285749500124.pdf: 1017839 bytes, checksum: f517fd8ef33fd56d66b9ccda9dc4d0f3 (MD5) WOS000285749500124.pdf.txt: 33157 bytes, checksum: 1ca2ac713bf6024674249abf58520bcb (MD5) Previous issue date: 2010-12-06 Submitted by Vitor Silverio Rodrigues (vitorsrodrigues@reitoria.unesp.br) on 2014-05-20T15:34:00Z No. of bitstreams: 2 WOS000285749500124.pdf: 1017839 bytes, checksum: f517fd8ef33fd56d66b9ccda9dc4d0f3 (MD5) WOS000285749500124.pdf.txt: 33157 bytes,…

All-silica fiberPHOSFOSOptical fiberMaterials scienceInfrared RaysChalcogenide glass02 engineering and technologySulfides01 natural sciencesArsenicalslaw.invention010309 opticsOpticsZero-dispersion wavelengthlaw0103 physical sciencesFiber Optic TechnologyLightingMiniaturizationbusiness.industryMicrostructured optical fiber[CHIM.MATE]Chemical Sciences/Material chemistryEquipment Design021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsEquipment Failure Analysis[ CHIM.MATE ] Chemical Sciences/Material chemistryChalcogensGlass0210 nano-technologybusinessHard-clad silica optical fiberPhotonic-crystal fiber
researchProduct

Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers

2010

Made available in DSpace on 2013-08-28T14:10:10Z (GMT). No. of bitstreams: 1 WOS000275454100017.pdf: 273411 bytes, checksum: da2aeaea61ab57013d39ecf2456466e3 (MD5) Made available in DSpace on 2013-09-30T19:22:36Z (GMT). No. of bitstreams: 2 WOS000275454100017.pdf: 273411 bytes, checksum: da2aeaea61ab57013d39ecf2456466e3 (MD5) WOS000275454100017.pdf.txt: 34647 bytes, checksum: b4efba760b21442eba43e7096f213b3e (MD5) Previous issue date: 2010-03-01 Submitted by Vitor Silverio Rodrigues (vitorsrodrigues@reitoria.unesp.br) on 2014-05-20T15:33:52Z No. of bitstreams: 2 WOS000275454100017.pdf: 273411 bytes, checksum: da2aeaea61ab57013d39ecf2456466e3 (MD5) WOS000275454100017.pdf.txt: 34647 bytes, ch…

All-silica fiberPHOSFOS[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiberMaterials science[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industry02 engineering and technologyMicrostructured optical fiber[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and Opticslaw.invention010309 opticsOpticsDouble-clad fiberZero-dispersion wavelengthlaw[ CHIM.MATE ] Chemical Sciences/Material chemistry0103 physical sciences0210 nano-technologybusinessHard-clad silica optical fiberPhotonic-crystal fiber
researchProduct

Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber.

2008

International audience; In this work, we investigate the Brillouin and Raman scattering properties of a Ge15Sb20S65 chalcogenide glass microstructured single mode fiber around 1.55 microm. Through a fair comparison between a 2-m long chalcogenide fiber and a 7.9-km long classical single mode silica fiber, we have found a Brillouin and Raman gain coefficients 100 and 180 larger than fused silica, respectively.

Materials scienceSilica fiberLightChalcogenideChalcogenide glass02 engineering and technologySulfidesSpectrum Analysis Raman01 natural sciences010309 opticschemistry.chemical_compound020210 optoelectronics & photonicsOpticsDouble-clad fiberBrillouin scattering0103 physical sciences0202 electrical engineering electronic engineering information engineeringFiber Optic TechnologyScattering RadiationComputer Simulationbusiness.industryMicrostructured optical fiberEquipment Design[CHIM.MATE]Chemical Sciences/Material chemistryModels TheoreticalAtomic and Molecular Physics and OpticsEquipment Failure AnalysischemistryNonlinear Dynamics[ CHIM.MATE ] Chemical Sciences/Material chemistryChalcogensGlassbusinessHard-clad silica optical fiberPhotonic-crystal fiber
researchProduct

Optical frequency domain reflectometer distributed sensing using microstructured pure silica optical fibers under radiations

2016

International audience; We investigated the capability of micro-structured optical fibers to develop multi-functional, remotely-controlled, Optical Frequency Domain Reflectometry (OFDR) distributed fiber based sensors to monitor temperature in nuclear power plants or high energy physics facilities. As pure-silica-core fibers are amongst the most radiation resistant waveguides, we characterized the response of two fibers with the same microstructure, one possessing a core elaborated with F300 Heraeus rod representing the state-of-the art for such fiber technology and one innovative sample based on pure sol-gel silica. Our measurements reveal that the Xray radiations do not affect the capaci…

Nuclear and High Energy PhysicsMaterials scienceOptical fiberOptical time-domain reflectometerRayleigh scattering01 natural scienceslaw.invention010309 opticsOpticsZero-dispersion wavelengthlaw0103 physical sciencesRayleighElectrical and Electronic EngineeringNuclear and High Energy Physic[PHYS]Physics [physics]RadiationOptical fiber sensor010308 nuclear & particles physicsbusiness.industryOptical fiber sensorsOptique / photoniqueMicrostructured optical fiberDistributed acoustic sensingradiationNuclear Energy and EngineeringFiber optic sensor[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronicsbusinessHard-clad silica optical fiberPhotonic-crystal fiber
researchProduct

<title>Optical pressure sensor based on the side-emitting optical fiber</title>

2003

Two prototype models of pressure sensors using side-scattering optic fiber as the sensitive element have been designed and experimentally assessed. The study showed that the use of 600-micron silica core side-scattering fiber resulted in 5 to 6 times higher sensitivity compared to the oridinary PCS fibers.

Optical fiberMaterials sciencebusiness.industryPlastic-clad silica fiberPolarization-maintaining optical fiberGraded-index fiberlaw.inventionOpticslawFiber optic sensorbusinessPlastic optical fiberHard-clad silica optical fiberPhotonic-crystal fiberSPIE Proceedings
researchProduct